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An effective form of the solution is proposed for a Hilbert problem relative to 
the two-dimensional vector function, which is convenient for applications. 

Cases of practical importance, of the elastic equilibrium of an infinite triangu- 
lar wedge weakened by a nonsymmetric notch at the vertex, reduce to the men- 

tioned Hilbert problem which was considered earlier in n]. The solution of the 
first fundamental problem is elucidated herein for three cases: 

1) A notch on the continuation of one side of the wedge; 
2) A notch issuing on the boundary of the half-plane; 

3) A semi-infinite slit with a breakpoint in the infinite plane. 

Formulas are presented for the coefficient of stress intensity near the aperture of 

the wedge, and for the dislocations of its sides under the effect of equal and 

opposite concentrated forces. 

1. Cmonlcrl matrix of ona homogewour Hilbart problam for a two-dimenaionrl 
vector function, Let the complex z plane be divided by a simple closed contour L 
into two domains: 0’ (outside L) and G- (within L). Furthermore, let a square sec- 
ond order matrix x (z) be holomorphic together with its inverse in the domains &2+ 
and Q- everywhere except at a finite number of points (poles), and let it have finite 

limits X+ (1) and X- (t), for 1 E L if the point i approaches L from the right while 

remaining in Q+, or from the left while remaining in Q-. 

Let us examine the homogeneous equation p. 31 

X+ (1) [X-(t)]-’ = G(t) (1.1) 

where G (1) is a 2 x 2 matrix given on L,which is nowhere singular and satisfies the 
HtJlder condition, The matrix );(z)possessing the above-mentioned properties and sat- 

isfying (1.1) on L is a rational solution of this equation. The canonical solution of the 
problem (1.1) i.e., the solution in which the matrices s(z) and x-1(z) are piecewise- 

holomorphic, and the order of the determinant of the matrix X(c)at infinity is the sum 

of the order of the column-vectors, can be obtained effectively from the rational solu- 
tion [l, 41. The problem of seeking a class of matrices G (1)admitting solution of (1.1) 

was formulated in [4] under the additional condition 

x+(t) [X-(1)1-1 = rx-(r)l-1 x+ (1) (1.2) 

This problem was solved in [l] by obtaining (to the accuracy of a matrix factor holo- 
morphic in LZ+ or Q- ) 
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(1.3) 
where b(t) and c(t) are arbitrary functions, l(t), m(t) and n(t)are polynomials, and 
special constraints are still imposed on the matrix function lg G (t) . The problem (1.1) 

for the case when the matrix G (t) has the form (1.3) underlies the subsequent exposit- 
ion, hence a solution of this problem is given below in a simple form convenient for 
analysis. 

One of the following propositions 

la + mn = 0; (1.4) 
la + mn = [g (z)P f (2) (1.5) 

is valid relative to the polynomial (12 $- mn) (q) where g (z), f(z) are polynomia- 
ls, and the set of zeroes of j(z)is formed by the zeroes of odd multiplicity of the poly- 

nomial (la + mn) (2) each taken once. 
In the case (1.4) we seek the solution in the form 

The functions c(z)and o (z)are to be determined here. Condition (1.2) is hence satis- 

fied identically, and (1.1) is satisfied if the two relationships 

c+(t) K-(t)l-’ = b(t) (1 .g) 

0 +.(t) 1 r;+(t)]-1 - 0 -(f) L<-(t)]-’ = c(t) b(t)]-’ w 

are satisfied on L 
Since dei, G (t) + 0, then under condition (1.4), b (t) # 0 also. It hence follows that 

(1.8) has a solution in the form of the piecewise holomorphic functions 5 (z), which 
never vanish at a finite distance. Then (1.9) also has a solution in the form of the piece- 
wise holomorphic function w (2). Therefore, not only a rational but also a normal (With- 

out poles at a finite distance)solution of the problem (1.1) satisfying condition (1.2) is 

given by (1.6). (1.7). 
Let us introduce a special form for the square, second-order matrix A Let a matrix 

of the form 
dev A = A - sI 

be called the deviator of the 2 xi? matrix.A,where 6 is the half-trace of the matrix A 

and :1 is the unit 2 x2 matrix. Let A be a matrix with nonsingular deviator. let us 
write 

(det A)-‘/‘A = (det .4)-‘&Z + (det d)-“x (- det dev A)‘lS(- det dev A)-‘/’ dev A 

Taking into account the identity 
(1.10) 

P + det dev A = det A 

we give the relationship (1.10) the form 

(det A)+.4 = Z ch e + (- det dev A)-‘lS dev A she (Lii) 
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+ In 
s-l- (- dot dev A)% 

=fln 
8 + (- det dev A)% 

(det A)‘/* s - (- det devA)‘la 

Here &,s are the eigennumbers of the matrix A. We call the parameter E the index of 
the matrix A. 
We call the matrix 

corn A = (- det dev A)-“’ dev A, (corn A)’ = Z 

the commutant of the matrix A . We obtain 

A = (det A)‘lr (I ch a f corn A sh e) (1.12) 

The following multiplication rule for second-order matrices represented in the special 

form (1.12) and having a common commutant is verified directly. In order to.multiply 
two such matrices it is sufficient to multiply their determinants and to add the indices 
while conserving the common commutant (in particular, there hence results that the 

considered matrices mutually commutate). To invert a matrix in the form (1.12) it is 
sufficient to invert the determinant and to change the sign of the index while conserv- 
ing the commutant as before. 

Turning to a consideration of the case (1.5), we initially assume that g (2) does not 

vanish anywhere on L, and we represent the matrix G (1) in the special form 

A-‘/a G (t) = Iche (t) + B (t) ,& e (1) (1.13) 

Here A (t), e (t) and B (1) = corn G (t) are the determinant, index and commutant 

of the matrix G (t),,where B (l) is the boundary value of a matrix of the form 

(1.14) 

on L,which is defined everywhere in the ‘z plane. We seek the solution in the form 

h-‘(z) X (z) = I ch [(f(“?) (~11 -i- B (z> sh Uf”?) (41 

A (z) X-‘(z) = I ch [(f”‘?) (z)] - B (z) sh I(r”P> (z)] 

(1.15) 

(1.16) 

where the functions A (z) and b (z) are to be determined. Condition (1.2) is hence 
satisfied identically, and (1.1) is satisfied if the relationships 

A+ (t>, [A- (t)l-’ 

are satisfied on L 

Let us use the notation 

= A’/8 (t), fl+ (t) - b- (t) = f-‘/a (t) e (t) (1.17) 

(4ni)-l [In (h,&)] IL = %A., (4xi)-1 [lIl i-3 IL = XL (1.18) 

%A + xc = (2d)-’ [ln h,] IL, %A - xc = (2ni)” [In A,] 1, 

where &,r (1) are the characteristic functions (eigennumbers) of the matrix G (1). Piece- 
wise-holomorphic solutions of the problems (1.17) are given by the formulas (PI, p. 131) 
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A (2) * (z -a xA ) exp [- +pLil] (1.19) 

P (z) = f ‘A (a) XL In (2 - a) - &- 1 ‘-‘;(t, ,” (‘I dt 
L 

1 
(1.20) 

Here a is an arbitrary point on L,at which the origin and terminus of the path of inte- 

gration in (1.19) and (1.20) coincide. 
For the solution defined by (1.15),(1.16) to have an integer bounded order at infinity, 

it is sufficient to set xc = 0 and if k > 2 (kis the degree of the polynomial f (z)), the 

following equalities 

Pf”‘(t)e(t)dt=O (a=i,, . .,r) (1.21) 

must still be satisfied on L,uhere y is the greatest of the integers such that the quantity 

2~ + 1 does not exceed k. The quantity %A is an integer, and the functionf’h (z) /3 (z) 
is defined by the relationship 

(1.22) 

whose right side is bounded at infinity by virtue of (1.21). The function A (z) never 

vanishes at a finite distance. The presence of isolated singularities (poles) of the comm- 

utant B (z) in the zeroes of the polynomial 6 (z), although not taken into account in 

obtaining the form (1.12). is in complete conformity with the definition of a rational 

solution. If 6 (z) has zeroes on L, then the corresponding solution which has poles on 

L can be obtained by a passage to the limit. 

Let us note that the result obtained for (1.1) on a simply-connected closed contour 
remains valid even for a contour in the form of an infinite line (one of the coordinate 

axes, say), if the elements of the matrix G (I) satisfy the Holder condition in the 
neighborhood of a point at infinity. 

2. Cart& pbbmr for aa infinite wedge with L rectilinar noqmmetrlc notch at 
the vertex. Let be given an infinite triangular wedge with a notch (0.1) on the line 
rp = 0,where the edges of the wedge cp = 8, and cp = -4, are stress free, and pre- 
scribed loads, equal in magnitude and opposite in direction, are applied to the sides 
of the notch. Let us denote the components of the stress-strain state as follows: 

Let us denote the corresponding Mellin transforms as follows: 

gj” ((P, P) = j rPgj (r, 9) dr 

Examining the first fundamental problem for the wedge 0 < rp & 8, [s], we obtain 
the following relationships between the transforms of the derived displacements 
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gl,,O (-tot p) and the stresses g3,c(0, p) on the notch lines: 

‘k%~” (SO, p) = D (p, 0,) (sin ~13, c?s pe, + p sin 8, cos 0,) bra (0, p) + 

f [PfP - 1) sin2 8, D (p, 0,) - 1/2 (1 - v)l g,” (0, p) 

D (p, 0) = (p” sin2 8 - sin2 pe)-’ (2.1) 
where E, v are the elastic modulus and Poisson’s ratio, respectively. Analogous rela- 
tionships hold for the wedge 0 > CJI > -0, but with +0 replaced by -0 and 8, by 

-0, *Hence, the following expressions result for the discontinuities of the transforms of 
the derived displacements on the line cp = 0: 

% EW C-0, _P;,, to;---, e~;j g= Y$P z T 1) [sin2 4 D (P, W - 
. 2 0 

f 1/4 [D (p, O,)(sin 2pe,+a sin 2;,);0 ;p, 0:) (sin 2pO,+p sin 28,)l g,’ (0, p) 

‘14 E Is,” (SO, p) - g1O (-0, p)l = ‘I2 P tp.+ 1) [sin2 0, D (p, 0,) - 

- sin2 e,D (p, 0,)l grO (0, p) + l/* [D (p, 0,) (sin 2p0, - p sin 20,) + 

+ D (P, %I (sin 2pe, - p sin 28,)i g3’ (0, p) (2.2) 

Let us introduce the two-dimensional 2 xl column vector of the form 

u(r) = {l/J k2 p9 + 0) - g2 (rv - WI9 %E kl (r, + 0) - g, (Tr - O)lI 

s(r) *&(r, O),'g,@, O)), r>l, u(r) =O' (2.3) 

and the Mellin transforms 

Uo* (p) = 1 ~Pu (r) dr, GO+ (p) = 1 a (r.) dt, a”- (P) = 1 rpa W dr 

as well a 2 x2 matrix of the form 

2 WI1 (P) = V21D (P, W bin pe, ~0s PO, + p sin 0, cos 0,) + 

+ D (p,, 0,) (sin p8, cos pea + p sin O2 cos O,)] 

2 (G},, (p) = p (p - 1). [sin2 0, D (p, e,) - sin2 e,.D (p, f&)1 

2 (G},, (p) = -p (p + 1) [sin2'8, D (pi 0,) - sin2 8, D (p, 0,)) 

2 {G},? (p) = l12[D (p, 0,) (sin PO, cos pe, - p sin 0, cos 0,) + 

+ D (p, 0,) (sin@, cospt3,.--p sin 8, cos O,)] (2.4) 

The vectors U’+(U), #+(p)are holomorphic in the half-plane 8 > --‘12,and the vec- 
tor uc- (p)in the halfplane 8 < O.Therefore, a two-dimensional vector of the form 

‘P (P) = ( ;:I I;; 
(6 > 60) 
(6 < 6”) (2.5) 

is piecewise-holomorphic with the jump lines L 6 = 6,, (8, is any number from the 

open interval (-1/2, @).A two-dimensional vector of the form 

* (P) = G (P) o.o+ (PI (24 

is the given vector. By virtue of (2.5) and (2.6) the equality (2.2) becomes 

1 E L, cp+ (1) = G (4 cp- (9 + 9 (0 (2.7) 
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on &where now the limit values of the piecewise-holomorphic vector 9 (p) on the line 
of jumps to the right and left, respectively, correspond to the superscripts “plus” and 

“minus”, in complete conformity with the notation in Sect.1. 

The equality (2.7) is a system of Wiener-Hopf equations, in vector-matrix form, for 
the unknown transforms of the derived displacements on the notch itself and for the str- 

esses on its continuation; this is simultaneously an inhomogeneous Hilbert problem for 

the piecewise-holomorphic two-dimensional vector cp (p)with the line of jumps L.‘We 
have 

2t-1 dev G (t) = 
il2 2: /I 

A 11 = '/2 ID (t, 01) sin 28, + D (t, 0,) sin 28,l 

A 12 = 0 - 1) [D (t, 0,) sin2 0, - D (t, 6,) sin2 $,I 

A 21 = -0 + 1) ID ct’, 0,) sin2 8, - D (t, 0,) sin2 f&J 

A22 = -41 

Let us consider three cases of the representability of the matrix G (t) in the form (1.3). 
Case 1. The notch on the continuation of one of the sides of the wedge enveloping 

the half-plane (0, = rt) 

dev G (t) = 
t sin 01D(t, 61) 

II 

co9 01 0 - 1) sin Or 

2 -((t+I)sin& -cos% II 
(2.9) 

Case 2. The notch emerging on the boundary of the half-plane (9, + 8, = rt) 

dev G (t) = 
tain 01 [D(t, 01) -D (t, WI 

/I 

cot381 
2 - (t + 1) sin 01 

Case 3. A semi-infinite slit with a breakpoint in the infinite plane((), + 0, = 2~); 

the expression dev G (t) retains the form (2.10). 

As follows from (2.9). (2.19). the relationshin 

corn G (t) = B (t), B(p) = (I2 + n&“/I; j;; _;:‘/I (2.11) 

I (p) = cos e,, m (p) ,F (p - 1) sin 0r, rz (p) = - (p + 1) sin 8, 

holds in all the considered cases. The same notation A (1), E (t), ii,,,(t), %A, xc, as 
in Sect.1, is retained for the remaining parameters of the matrix (J’ (t) The order of the 

polynomial 12 + mrz = 1 - p2 sin? 8, equalsli = 2,hence there are no conditions 

of the form (1.21). 
According to (1.15), (1.19) and (1.20). the solution of the homogeneous problem (1.1) 

corresponding to problem (2.7), is 

X+ (1) [X- (1)1-l = G (t) 

A-’ ,(p)X (p) = ICI1 I(1 - p2 sin2 O,)‘/a fi (p)l+ B (p) sh [(I - p2 sina O,)‘/z b(p)] 

(2.12) 

For 6, +- 0,taking account of the symmetry (antisymmetry) of the separate functions 
relative to the argument t on the imaginary axis, we obtain the following formulas: 
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0 

(2.13) 

From (2.11). (2.12) and (2.13). we have directly for 6 > 0 

A (P) = PA-’ (- P)9 B (P) = - B (-PI* B (PI = Be, (-p) 

x (p) = pX(‘)(-1) (-p) (2.14) 
The superscript (*I denotes the transpose of the matrix. The following asymptotic depe- 
ndencies, valid for large] P 1, result from (2.12> 

P (P> = Q (p sin Q” , q =F\ (1 $ T’sins~,)-“ae(i~)& 

b 

s>o, A(p).-+ x (P) - p”‘Q, 

6 < 0, A (p) - - I$‘*, 

CO9 q sinq 
?( (p) - _ ip’l’ Q, -sinq COSQ (2.15) 

The matrixX (p) ,defined by (2.12). (2.13) is the-can&M solution of the homogeneous 
equation since it is piecewise-holomorphic together with the matrix X-l (p)(the liue 
of jumps L is the imaginary axis), and the sum of the orders of the separate columns is 
1.0, which agrees exactly with-the order of the determinant. The branch of the piece 
wise-holomorphic maaix X (p)defined in the right half-plane is analytically continut 

able into the left half-plane by using the matrix (GX) (p) at least up to the vertical 
line& = -l/?; the inverse matrix (X-‘G-l) (p)is hence also holomorphic. The pair 
of matricesx (p) and (GA) (p) obtained id this manner can be considered as limit 

values of the piecewise-holomorphic matrix X (p)on the left and right on any vertical 

line ,L in the open strip 0 > 6 > -l/. Returning to the inhomogeneous problem (2.7). 
we obtain, by taking account df (2.6) _ 

c E L, [y+ (t)l-’ cp (1) = ix- @)I-’ cp- (t)*+ Ix+ (41-l J, (4 (2.46) 
[X+ @)I-’ qI (i) = [X- (f)l-’ u”+ (4 

For large 1 p Lfor loads bounded on the whole closed interval 0 ,( r < 1, uO+ (p) - 
- 0 (p-l), hence the solution of problem (2.16) which vanishes at infinity is given by 

the foimula 
is- ‘:)I’,““’ ft) dt 

L 

(2.17) 

The branch of the piecewise-holomorphic matrix X (p) defined by (2.12). (2.13) in the 
left half-plane can be continued analytically into the right half-plane by using the mat- 

rix (G-lx) (p). H owever, the inverse matrix(X-‘G) (p) will have a pole at the point 
p = 0 in this case. The results of calculations-based on utilization of the fit two 
dependencies (2.14) yield 

Res (A-“‘A) (0) = - 12 f- PA”‘(P) = - 12 f-- p (A;l’h;‘) (p) 

/3’-(O) = - p- (0) = ‘/se (0) = (2.18) 
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where hr,s (p) are characteristic functions of the matrix G (p). We obtain 

- 2&s (X-r@ (0) = 2 (1 [ Vx) + I/-- PA, (p)] + 

+ * w-- PA, (P) - If- PA, (P)l} 

* = ~3 (O), .{*I-,, = COS&, {ii),, = - sin 6,, (N,,J = - sine,, 

(H),, = -cos8, (2.19) 

for the residue at the point p = 0 

8. SWoa carcu~U~Uoa on the conUnuation of the notch and the mutual dlplacement 
of itr tld~, Let us call a 2 xl column vector of the form 

n = lim (r- l)“‘c(r) (3.1) 
r-a+ll 

the stress intensity vector. The components of me vector n are evidently coefficients 

of the intensity of the normal and tangential stresses on the continuation of the notch. 

We have’ ([6], p.48) for large 1 p ( 

so- (P) _ i r-(1/,) np-“2 (3.2) 
where r (x), is the standard notation for the Gamma function. 

Comparing (2.17) and (3.2) we obtain by virtue of (2.5) and (2.15) 

1/&t = - &. \ [ix- (f)]-‘sC+ (f) dl (3.3) 
i 

Substituting the expression for the transform oO+ (1) in terms of its original into (3.3) 
we have 

(3.4) 

Inverting the order of integration in (3.4). we obtain 

(3.5) 

JI (rR) = -& \ ro’ [X-(t)]-', dl = & \ rof [X+ (t)]-’ G (1) dt (3.6) 
i L 

Here A’ (r,,) and IV (r,) are 2 x 2 matrices. The former is the matrix Green function 

for the intensity vector since its magnitude is given by the product of the matrix A’ (ro) 
by a column-vector on the right under the effect of equal and opposite forces at the point 

ro, where the vector components are common for both the normal and tangential force 

components. 
Let us now introduce the 2 xl column vector u (r) of the mutual displacement of 

points on opposit sides of the notch and at identical distances from the wedge vertex, 
as well as the corresponding vector Mellin transform 

v (r) = :luo (r, -t- 0) - uO (r, - (91, Iu, (r, + 0) - u, (r, - (-911 

r>l, v (r) = 0, vu (p) = 1 rpu (r) dr 

We have 
0 

I/.+ Zu' (r) = u(r), I,‘4 E:v” (p) = - (p -/- I)-’ U0 (p + 1) 
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Taking account of (2.14). we obtain from (2.17) 

l/*ElY (p) = 
r;(‘)(-1) (_ p - 1) 

‘Lni s ix- (t)]-’ Go+ (t) dt 

t--p-l 
L 
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(3.7) 

By the theorem of multiplication of transforms ([7], p. 503). the original of the left 
side in (3.7) is given by the formula 

V&u(r) =i 7 Jlc’ (rE) 11 (E) dE 
0 

73.8) 

where rl (r) is also a 2 xl column vector. The theorem of multiplication of originals 

(p]. p. 505) for the form of the Mellin transform taken in herein yields 
I 0 V < 1) 

‘IOYP) = j- mo (r) dr = W (P)I-~o~+ (p) 
0 

Again applying the theorem of multiplication of transforms, we have 

YO (r) = j M (ror) o (ro) dro 
0 

As a set, (3.8) - (3.10) yield oD 

+ Ev (r) = - \ Mc)(rE),$ M (rot) a(r,)dr, 
i 

Inverting the order of integration in (3.11) we o&n 

v (r) = L .Ir ( s r9 ro) Q PO) dro 
0 

eD 

4 EV (r, ro) = - 1 M(” (rc) M (rot) 3 
1 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Here V (r, r,,) is a 2 x 2 matrix, which is the matrix Green function for the mutually 

displacements of the sides of the notch. Indeed, the column-vector ZJ (r)of the mutual 

displacements of the sides at the point r, is given by the product of the matrix v (r, r”) 

by a column-vector on the right, under the effedt of equal and opposite concentrated 
forces at the point r,,uhere the vector components are common for both normal and 

tangential force components. Taking into account that the matrix JF (To) is a zero mat- 

rix when the value of the argument exceeds 1.0, we obtain 

-& EV (r, ro) = - \ p,-‘M(*)(rt) M(r,E)dg = - ~~~~M~*‘(r/z) M{r,/z)dz 

(6==inf(l/r, l/ro), O=sup(r,r,)) (3.13) 

The relation between the matrix Green functions for the intensiry vector and the vector 
of the mutual displacements of the sides under the effect of equal and opposite concen- 
trated forces is given by (3.5), (3.12) and (3.13). 
The relationship 
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v (r, 4 = V(*) (ro, .r) (3.14), 

results also from (3.13). The equality (3.14) expresses the law of reciprocity of the dis- 
placements under the conditions of this problem. 

Turning to the construction of approximate formulas to calculate the matrix function 
M (r&we first present two identities which result directly from the Jordan lemma and 

the theorem of residues 

1 

2ni s 
I’ tL t) rot dl =; _ 

t r(l/?-t) = flo ,&!/p$ = 

*k/a0 r (Ir + l/z) r* 

r(k+*) 
= g [(1 -.,;/aQ)-‘/* + (i + ,;@)-“a] (3.16) 

In the former of the cases considered (a notch on the continuation of one of the sides of 
the wedge, IJ, Lejl n) we write (3.6) as 

In the two remaining cases(i0, i- 6% = n, C& -I- es = 2x)we write 

let us consider a matrix defined in the half-plane & > - Vz $hose bouudary value on 
A is the lntegrand in (3.18). It has a pole at the points sx ; 2fJ,, sz f 20s fs is an integer) 

and also at the poles of the functionsD (p, 0,)and D (p, &), which have the respective 
form for large s 

261,z~s,/n,W (3~ + 1) + i (2/n) In [Gs -I- 1) ~0;: sin %.d, Pas+r = Pz, 

Let us agree to understand a set of pairs of complex-conjugate poles of the functions 

D (p; Oijand D (pi i&), as well as the points sx / 28, and .SZ / 20, as the group of poles 

with number s .Combining components referring to a certain group of poles into one 
term each time in the decomposition of the integral (3.13) in residues, we obtain a 
rapidly converging series, and a completely analogous situation in the decomposition of 
the integral (3.17). We obtain approximate expressions for the matrix 111 (r,,)which are 
suitable for utilization in the whole interval 0 < r. < l,by retaining only terms corres- 
ponding to the first two poles p = 0, p =5 1 in the expansions of the integrals in residues 
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of the integrands. From (3.17) and (3.16) we have 

M (ra) s Mi (ro) (3.19) 

&=n, Ml (ro) ,= - Rcs (x-z) (0) - re Rss (X-lG) (if + l/g ((26$-“* [(i - rg nlt% -’ ) h, 

_ (I + ,;I 291 )-‘/a _ rn Ilot o 1 + n-‘18 [(i - r&IS - 1 - ‘(sro)) Q-1 

01+ es = JZ, 01 + 0~ = 2n, Ml (ro) = - Res (X-1G) (0) - r. Res (X-sG) (i) + 
+ iis ((26,)~sri [(i _ ,~;tso~)-%_ (i + ,z/setj-% __r;WS~ + 

+(26,)-‘/t [($ _ ~~/~a8~/1_ (j + ;r;ls@.)-‘/r _ ,t/se*]) Q-l 

where Al (ro) is a 2 x2 matrix. The quantity Res (X-l@ (i) is calculated by (2.4),(2.12) 
(2.13). Utilizing the notation 

II) (2, 9) =, [(i _ @O )-% _ (1 +&W)-‘f. - ../@J (2t$-‘/* 

we obtain the formulas presented below. 
Case 

wedge 
1. Notch on the continuation of one of the sides of 

enveloping a half-plane (6s 3i: X) 

Hi @a) = A0 - f0Ai +I[% (0 (r0, &)+ JC'~[(~ - r0 'I*- I -l/~F~]J ffi' 

'I/iTAo= 

II 

1/liTcosa4+ "r/Z sina -(1/ ‘- Z- I/Z) sin 6 co9 4 

-(v’u1- v;i) sin 6 co9 fi ‘t/aZin2 6 + VZ Goss 6 I 

a 

1 I 01 
al,2 = &Jsin& ‘+Fy 6 =2 * z = cam el 3 (1) 

Values of the quantities g, as well as of the nonzero elements of the matrix A, for val- 
ues of the angle0, = 15, 30, 45, GO, 75, 90, 105, 120, i35, i50, 16sDhave been calcu- 
lated on the “Urai-2” computer and are presented in Table 1. 

Case 2, 
(e,+ e2= a)~ 

Notch emerging on the boundary of the half-plane 

Afl (to) = ~~ - roa + 112 p (rot el) + cl, fro, s - ej)l p (3.21) 

JfrBo= 
Jf/b7 co9 6 + l/h sins 8 -(1/K- 1/K)sin*cos6 

- ( i/K- z/i;;t sin 6 cos 6 J0Z sin2 6 + vgcosx$ 

2A (1) III = e-- 
1 1 

)ll 

i 0 
tg ul-el - tg61-61 fn - tgel 0 II 

Values of the quantities Q and nonzero elements of the matrix 3, for values of the angle 

6, = 15.30, 45, 60, 75” are presented in Table 1. In the case of a notch on the bisec- 
trix of the half-plane(O,= 90’) B,is a zero matrix, and q = O.:For values of the angle 

0, in the DO- iWrange, elements of the matrix &can be expresses in terms of values 
of the cor~s~nding elements in the 0 -gOOrange since the diagonal elements are 

symmetric, and those outside the diagonal,are antisymmetric functions of the argument 

8, i $00. 
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Case 3. Semi-infinite slit with breakpoint in the infinite 

plane (O, -+ B2 = 2X): 
,111 (ro) = CO - r0Cl+ l/2 [(I) (ro, 61) + (1) (r0, ZI(. - b)]Q-’ (3.2’) 

- ( I/G - I/G) sin 6 cos 6 

-(VG-- I/G)sin6mO /I 

$G sin26 + ‘r/S cOsz it II 

Values of the quantities (7, as well as the nonzero elements of the matrix C, are present- 
ed in Table 1 for values of the angleO, = IuS, 12O, 135, 150, i6jc.In the case when the 

value of the angle between the semi-infinite slit and the finite section from the break- 
point exceeds 55”, the error in the approximate formula (3.19) is quite significant. This 
is connected with the presence of poles of the functionD (p, O,)near the value p = 1 

(and even closer to the origin fort), < 103”)discarded in the derivation. Meanwhile. for 
small values of the angle Oi it is necessary to verify the presence of an unopened semi- 
infinite notch, which it is diffic’ult to realize in practice. 

In conclusion, let us note that the problem of elastic equilibrium of a wedge with a 
notch on the bisectrix reduces to one functional Wiener-Hopf equation and hence,it 

always has a solution in the form of Cauchy type integrals. This problem was conside- 
red in 18. 9, 10, 117, for example, for distributed loads. 

Table 1. 

io5 
t i 
75 

12 
120 
135 
150 
165 

0.536 
0.423 
0. .xX 
0.230 
O.l69 
0.113 
0.071 
0.040 
0 O’O 
0:05s 
0.002 

- 
0, =1 I 

10.732 -2.903 
2.8Gl -1.720 
1.046 -i. 163 
0.353 -O.820 
0.034 -0.596 

-0.126 -0.420 
-0.209 -0.296 
-0.251 -0.205 
-0.271 -0.136 
-O.259 -0.052 
-0.282 -0.038 

- 

I 

-0.103 ‘1 15 0.536 10.786 -2.890 
-0.113 30 0.419 2.892 -1.669 
--0.117 45 0.308 1 .U56 -1.056 
-0.120 60 :% 0.3OS -0.637 
--0.1’3 75 0.091 -0.302 

-0.135. 01 + 82 = 2n 
j -0.138 II I ; 

-0.140 / 105 

120 
135 
150 
165 

0.068 -0.672 -2.506 
0.036 -0.295 -0.510 
0.016 -O.“sG -0.286 
O.OO5 -0.285 -0.165 
0.001 -O.284 -O.o77 
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ALGORIT?lM OF THE METHOD OF CHARACTERISTXCS FOR THE ANALYSIS 

OF NONLINEAR ONE-DIMENSIONAL WAVE PROCESSES OF CONICAL 

AND CYLINDRICAL SHELL DEFORMATION 

(PMM Vol.35, No.4, 1971. pp.690-700) 
A. Ia. LAKHE and U.K. NIGUL 

(Tallin) 
(Received March 2. 1971) 

An algorithm is proposed for realizing the method of characteristics for the ana- 

lysis of one-dimensional wave processes excited by the edge effect and describ- 

ed by a quasilinear system of differential equations having several pairs of fam- 
ilies of characteristics. The algorithm is written in Lagrangian coordinates for 
conical and cylindrical shells, on the basis of a quasilinear system of sixth order 

equations of a geometrically nonlinear theory of Timoshenko type [lL 

The algorithm presumes the absence of strong discontinuities, i. e., of discon- 
tinuities in the first derivatives of the shell displacement, which will limit the 
class of admissible edge effects and permit carrying out the analysis up to the 

appearance of the first shock in problems where the shocks originate during wave 
propagation. Despite this, the proposed algorithm permits elucidation of speci- 
fic properties of the wave solution in nonlinear theory. An illustrative example 
is given for a conical shell. 

In speaking of the one-dimensional transients of conical and cylindrical shell 
deformation. we shall have in mind the axisymmetric processes of these objects 


